# New tools bring new observations of natural history





Aaron M Olsen Postdoctoral fellow Brown University

#### A project from my PhD

What came first, the duck or the goose? And what's the difference?

## Which of these is a duck and which is a goose?











#### Waterfowl have diverse beak shapes



Photo credits: Dick Daniels, Rick and Nora Bowers, Philippe Boissel, Mila Zinkova, Ken Billington, ibc.lynxeds.com Adrian Pingstone, Laura Whitehouse, audobonbirds.org, projectnoah.org, JJ Harrison, wikimedia.org

#### Methods / Skills I had to acquire

Stereo photography

Statistics (PCA, PLS, evolutionary modeling)

Data visualization

## StereoMorph

3D landmark and curve collection using stereo camera setup





At cran.r-project.org

Olsen & Westneat 2015

### StereoMorph

3D landmark and curve collection using stereo camera setup











#### Conclusions

A more "duck-like" beak is probably the ancestral form whereas a more "goose-like" beak has evolved multiple times independently

The evolution of geese is associated with a shift away from a diet rich in seeds and insects and toward a more herbivorous diet



#### Aaron Olsen @aarolsen · May 31

Based on my new analysis of waterfowl beaks it appears that the @Gooselsland "goose" is actually a #duck! onlinelibrary.wiley.com/doi/10.1111/13...





Replying to @aarolsen @Gooselsland

As a @Gooselsland fan (my favorite #GreenLineIPA), may I suggest a more anatomically accurate logo? #birds #beer



7:36 AM - 31 May 2017

3 Retweets 15 Likes





Q 1 1 → 3 0 15



#### Goose Island Beer Co @ @Gooselsland · May 31

Replying to @aarolsen

After much deliberation, we will henceforth be known as "Duck Island". #WeAreKeepingTheLogo







17



A project from my current work

Is a fish head more like an umbrella or an arm?

How many degrees of freedom do the following devices or systems have?













Robotic arm

Manuelli et al. (2019) arXiv preprint





Channel catfish

Video credit: Elizabeth Brainerd







## Is a fish head more like an umbrella/ syringe or an arm?



I-2 DoFs
Simple expansion/compression system



>6 DoFs

Complex manipulation system

#### Methods / Skills I had to acquire

Basic surgical techniques

X-ray stereo videography

Mechanical modeling

3D graphics and visualization





Lateral

Ventral





Filmed at 300 frames/sec Animation slowed 4x









Olsen et al. in prep











In vivo motion collected using XROMM

Linkage model driven by 7 DoFs







# Potential application?



2-DoF particle positioning system using fluid flows

# Potential application?



## Conclusions

The catfish skull can be modeled as a 5-loop parallel mechanism with 5-7 DoFs used during suction feeding

The catfish skull functions as a prey manipulation system rather than a simple expansion/compression system, more analogous to a human arm than to an umbrella or a syringe

Future directions

### Become a professor

Create virtual and physical models of animals (robotic animals) and use these models with live animal motion capture to better understand how animals work and move

# Start my own anatomy design company

Create "model animals" (like model ships or planes) that are anatomically accurate, kinetic, and assemble-able and assemble-able for use as toys and in anatomy teaching and surgical training









### Become a professor

#### Pros

Stable job, decent pay and benefits

Lots of autonomy

Get to mentor students

Get to design and teach my own courses

Can do risky, exploratory research

#### Cons

Very few job openings

Would likely have to move

More managerial position right away

# Start my own anatomy design company

#### **Pros**

Total autonomy

Hands-on work (at the start)

Likely don't need to move

Potentially greater impact

#### Cons

Risky job security

Low pay at the start

Will have to learn a lot "on the fly"

## Is a PhD and/or postdoc best for you?

Lots of career options after a PhD or postdoc (examples: STEM/tech jobs, data analytics, government research, policy work, conservation non-profits and agencies, healthcare, professor, K-I2 teacher, writer, university administration jobs, starting your own business)

But for what you want to do a PhD or postdoc may not be necessary. Only do a PhD/postdoc if you want to do a PhD/postdoc, not just because it will get you where you want to go.

# Acknowledgements

Beth Brainerd Erika Tavares Alejandro Romero Ariel Camp John Capano Yordano Jiménez || Lomax Elska Kaczmarek Hannah Weller Patricia Hernández

Lara Helwig
Tara Bozzini
Bianca Obiakor
Mariah Nuzzo
Shahn Thaliffdeen
Connor Johnson
Chahat Rana
Brown EEB Department
Brown Animal Care Facility





## Funding Sources

NSF PRFB DBI-1612230 NSF IOS-1120967 Bushnell Fund